الموضوع الأول:

التمرين الأول:

 $b\equiv 2~[4]$ و $a\equiv 3~[4]$ و طيعيان حيث: $a\equiv a$

 $^{\circ}4$ هل العدد $^{\circ}a+5b^3$ يقبل القسمة على $^{\circ}4$

 $a^2 - 2b^3$ على 4. (2

 $a \equiv -1$ [4] تحقق أن: (3

 $a^{1435} \times a^{2016}$ على 4. (4

 $a^{1435} + a^{2016} \equiv 0 \, [4]$ استنتج أن: (5

التمرين الثاني،

نتكن (u_n) متتالية حسابية حدها الأول u_0 وأساسها u_1 حيث: $u_{12}=19$ و $u_3=1$

عين الأساس r والحد الأول u_0 لهذه المتتالية. (1

 $oldsymbol{u}_n$ أكتب عبارة الحد العام u_n بدلالة (2

 $u_n = 79$ عين قيمة n عين قيمة (3

 $S_n = u_0 + u_1 + u_2 + \dots + u_n$ أحسب بدلالة n المجموع: (4

 S_{42} استنتج المجموع (5

التمرين الثالث:

نعتبر الدالة f للمتغير الحقيقي x المعرفة على $f(x) = 2 - \frac{2}{x+2}$

تمثیلها البیاني في مستو منسوب إلى معلم متعامد ومتجانس (C_f) .

ا أحسب نهايتي الدالة f عند $\infty-$ وعند $\infty+$ ثم فسر النتيجة بيانيا.

احسب نهایة الدالة f عند g ثم فسر النتیجة بیانیا. (2

ين الدالة المشتقة f' للدالة f وادرس اشارتها. (3

.4 شكل جدول تغيرات الدالة f على مجموعة تعريفها.

5) عين احداثيات نقط التقاطع مع المحاور.

الماس (Δ) اكتب معادلة المماس (Δ) اكتب معادلة المماس (Δ) المنحنى الدالة $x_0=0$.

 (C_f) و (Δ) و (7

قال عالم الرياضيات والفيزياء سيمون دونيس: في حياتنا شيئان مهمان: أن نتعلم الرياضيات وأن نُدرس الرياضيات.

تصحيح الموضوع الأول:

التمرين الأول:

 $b\equiv 2$ [4] و $a\equiv 3$ [4] و طيعيان حيث: $a\equiv a$

نبحث إن كان العدد $2a + 5b^3$ يقبل القسمة على 4: (1

نقول عن العدد $2a+5b^3$ أنه يقبل القسمة على 4 إذا كان:

 $2a + 5b^3 \equiv 0 [4]$

 $a\equiv 3$ [4] دينا:

 $2a \equiv 6$ [4] ينتج: (2) ينتج:

 $6 \equiv 2 [4]$

 $2a\equiv 2\ [4]\ ...\ (1)$ فإن (حسب خاصية التعدي):

 $b\equiv 2~[4]$ ولدينا:

 $b^3 \equiv 2^3 \, [4]$: $b^3 = 8 \, [4]$

 $b^3 \equiv 8 [4]$

 $8 \equiv 0 \ [4]$ وبما أن:

 $b^3 \equiv 0 \ [4]$ فإن (حسب خاصية التعدي):

 $5b^3\equiv 0\ [4]\ ...\ (2)$ ينتج: (5) الموافقة في المدد (5) ينتج: (5) طرف لطرف ينتج:

 $2a + 5b^3 \equiv 2 [4]$

و منه العدد $2a+5b^3$ لا يقبل القسمة على 4.

 $a^2 - 2b^3$ على 4: (2

 $a\equiv 3$ [4]

 $a^2 \equiv 3^2 [4]$ وحسب خواص الموافقات:

 $a^2 \equiv 9 [4]$

 $9 \equiv 1 [4]$ وبما أن:

 $a^2 \equiv 1 [4] \dots (3)$ فإن (حسب خاصية التعدي):

 $b^3\equiv 0$ [4] ولدينا مما سبق أن:

 $2b^3\equiv 0\ [4]\ ...\ (4)$ ينتج: (2) ينتج في الموافقة في العدد (2) ينتج: نظرح الموافقة (4) من (3) نجد:

 $a^2 - 2b^3 \equiv 1 [4]$

 $a^2-2ar{b}^3$ على a هو a

 $a \equiv -1$ [4] نتحقق أن: (3

 $a \equiv 3 [4]$ لدينا:

 $a+1\equiv 3+1\,[4]$ نضيف العدد (1) لطرفي الموافقة:

 $a+1 \equiv 4 \, [4]$

 $4 \equiv 0 \ [4]$ وبما أن:

 $a+1\equiv 0\ [4]$ فإن (حسب خاصية التعدي): فإن (حسب خاصية التعدي): فالموافقة: $a+1-1\equiv 0-1\ [4]$ نظر ح العدد a+1=0 أن طر في الموافقة:

 $a+1-1\equiv 0-1$ طرح العدد (1) من طر في الموافقة: [4]

 $a \equiv -1$ [4]

 $a^{1435} imes a^{2016}$ على 4: $a^{1435} imes a^{2016}$ على 4:

 $a\equiv -1$ [4]

 $a^{1435} \equiv (-1)^{1435} \, [4]$ وحسب خواص الموافقات:

بما أن العدد 1435 فردى فإن:

ومنه نجد:

$$n = 42$$

<u>حيث:</u>

$$u_{42} = 79$$

 $S_n = u_0 + u_1 + u_2 + \dots + u_n$ نحسب بدلالة n المجموع: (4 نحسب بدلالة S_n بالعلاقة التالية:

$$S_n = \frac{\left(1 + \frac{1}{2}\right)\left(2 + \frac{1}{2}\right)\left(2 + \frac{1}{2}\right)\left(2 + \frac{1}{2}\right)}{2}$$

ويحسب عدد الحدود بالعلاقة التالية:

1+دثيل الحد الأول في المجموع - دليل الحد الأخير في المجموع = عدد الحدود حيث:

- u_0 الحد الأول في المجموع هو u_0
- u_n الحد الأخير في المجموع هو u_n
 - n+1 عدد الحدود هو

$$S_n = \frac{(n+1)(-5+2n-5)}{2}$$

$$S_n = \frac{(n+1)(2n-10)}{2}$$

بعد الاختزال نجد:

أي:

$$S_n = (n+1)(n-5)$$

 S_{42} استنتاج المجموع (5

 $S_n = (42+1)(42-5)$ نعوض n=42 في عبارة S_n غبارة n=42 في عبارة ومنه نجد:

$$S_n = 1591$$

التمرين الثالث:

نعتبر الدالة f للمتغير الحقيقي x المعرفة على $f=\mathbb{R}-\{-2\}$ بـ:

$$f(x) = 2 - \frac{2}{x+2}$$

تمثيلها البياني في مستو منسوب إلى معلم متعامد ومتجانس ((C_f) .

 $+\infty$ نحسب نهایتی الدالة f عند f وعند (1

$$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} \left(2 - \frac{2}{x+2} \right)$$

$$\lim_{x \to -\infty} \left(\frac{2}{x+2} \right) = 0$$

$$\frac{1}{2}$$

<u>----</u> ومنه نجد:

$$\lim_{x \to -\infty} f(x) = 2$$

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \left(2 - \frac{2}{x+2}\right)$$
 etc.:

$$\lim_{x \to +\infty} \left(\frac{2}{x+2}\right) = 0$$

ومنه نجد:

$$\lim_{x \to +\infty} f(x) = 2$$

التفسير البياني:

يقبل مستقيم مقارب يوازي حامل معور الفواصل معادلته: v=2

$$(-1)^{1435} = -1$$

$$a^{1435} \equiv -1$$
 [4]

$$a^{1435} \equiv 3 \, [4] \dots (5)$$

$$a \equiv -1$$
 [4]

$$a^{2016} \equiv (-1)^{2016} [4]$$
 وحسب خواص الموافقات:

$$(-1)^{2016}=1$$
 بما أن العدد 2016 زوجي فإن:

$$a^{2016} \equiv 1 \, [4] \dots (6)$$
 نخت نخب المعافقة (5) ما بن المعافق (5) ما بن

نضرب الموافقة (5) في الموافقة (6) طرف نجد:
$$a^{1435} \times a^{2016} \equiv 3$$
 [4]

$$a^{1435} imes a^{2016}$$
 على 4 هو 3.

$$.a^{1435} + a^{2016} \equiv 0$$
 [4] استنتاج أن: (5

$$a^{1435}+a^{2016}\equiv 4\,[4]$$
 بجمع (5) و (6) طرف لطرف ینتج: $4\equiv 0\,[4]$

$$a^{1435} + a^{2016} \equiv 0$$
 [4]

التمرين الثاني:

لتكن
$$(u_n)$$
 متتالية حسابية حدها الأول u_0 وأساسها u_1 حيث: $u_1=19$ و $u_3=1$

نعين الأساس r والحد الأول u_0 لهذه المتتالية: (1

بما أن
$$(u_n)$$
 متتالية حسابية فإن:

$$\begin{cases}
 u_3 = u_0 + 3r \\
 u_{12} = u_0 + 12r
\end{cases}$$

بعد التعويض ينتج:

$$\begin{cases} u_0 + 3r = 1 & (1) \\ u_0 + 12r = 19 & (2) \end{cases}$$

$$(u_0 - u_0) + (12r - 3r) = 19 - 1$$

 $9r = 18$

ومنه نجد:

$$r=2$$
 نعوض قيمة r في المعادلة (1) ينتج: (1) ومنه نجد:

$$u_0 = -5$$

 u_n نكتب عبارة الحد العام u_n بدلالة (2

 u_0 تعطى عبارة الحد العام u_n لمتتالية حسابية حدها الأول r وأساسها r بالعلاقة التالية:

$$u_n = u_0 + n \times r$$

بعد التعويض والترتيب نجد:

$$u_n = 2n - 5$$

 $u_n = 79$ نعین قیمة n حتى یکون: (3

$$u_n=79$$
 نحل \mathbb{N} في المعادلة: $2n-5=79$

:-2 عند f الدالة f عند (2)

$$\lim_{x \le 2} f(x) = \lim_{x \le 2} \left(2 - \frac{2}{x+2}\right)$$

$$\lim_{x \to -2} (x + 2) = 0^{-}$$
 بما آن:

$$\lim_{\substack{x \to -2 \\ x \to -2}} \left(\frac{2}{x+2}\right) = -\infty$$

ومنه نجد:

$$\lim_{\substack{x \\ x \to -2}} f(x) = +\infty$$

$$\lim_{\substack{x \to -2 \\ x \to -2}} f(x) = \lim_{\substack{x \to -2 \\ x \to -2}} \left(2 - \frac{2}{x+2} \right)$$

$$\sum_{x \to -2}^{\infty} (x + 2) = 0^+$$
 بما أن:

$$\lim_{\substack{x \to -2 \\ x \to -2}} \left(\frac{2}{x+2} \right) = +\infty$$

ومنه نجد:

$$\lim_{\substack{>\\x\to -2}} f(x) = -\infty$$

التفسير البياني:

يقبل مستقيم مقارب يوازي حامل معور التراتيب معادلته: x=-2

3) نعين الدالة المشتقة f' للدالة f وندرس اشارتها:

:f'(x) - \bullet

$$f'(x) = 0 - \frac{0(x+2)-1\times 2}{(x+2)^2}$$

ومنه نجد:

$$f'(x) = \frac{2}{(x+2)^2}$$

f'(x) دراسة إشارة •

لدينا:

$$\begin{cases} 2 > 0 \\ (x+2)^2 > 0; x \in]-\infty; -2[\cup]-2; +\infty[$$

$$\frac{2}{(x+2)^2} > 0$$
 ; $x \in]-\infty$; $-2[\cup]-2$; $+\infty[$ جدول الإشارة:

x	-8 -	2 +∞
$\frac{2}{(x+2)^2}$	+	+
f'(x)	+	+

من أجل كل x من $]-\infty$; $-2[\cup]-2$; $+\infty[$ لدينا: f'(x)>0

نشكل جدول تغيرات الدالة f على مجموعة تعريفها: (4)

x	$-\infty$ –	-2 +∞
f'(x)	+	+
f(x)	$2^{+\infty}$	$-\infty$

5) نعين احداثيات نقط التقاطع مع المحاور:

مع محور الفواصل:

نقط تقاطع المنحنى (C_f) مع حامل محور الفواصل هي مجموعة حلول المعادلة:

$$f(x) = 0$$
 نحل في المجال $]-\infty$; $-2[\cup]-2$; $+\infty[$ المعادلة: $2-\frac{2}{x+2}=0$: أي: $x=-1$

و منه نجد: . . .

ومنه (C_f) يقطع محور الفواصل في النقطة: A(-1;0)

• مع محور التراتيب:

نقط تقاطع المنحنى $\left(C_f\right)$ مع حامل محور التراتيب هي مجموعة حلول المعادلة:

$$y = f(0)$$

ومنه (C_f) يقطع محور التراتيب في النقطة: B(0;1)

نكتب معادلة المماس (Δ) لمنجنى الدالة f عند النقطة ذات (δ) الفاصلة $x_0=0$:

تعرّف معادلة المماس (Δ) بالعلاقة التالية:

$$(\Delta): y = f'(x_0)(x - x_0) + f(x_0)$$

<u>حيث:</u>

$$\begin{cases} x_0 = 0 \\ f'(0) = \frac{1}{2} \\ f(0) = 1 \end{cases}$$

بعد التعميض نحد:

$$(\Delta): y = \frac{1}{2}x + 1$$

 $:(C_f)$ و (Δ) نرسم (7

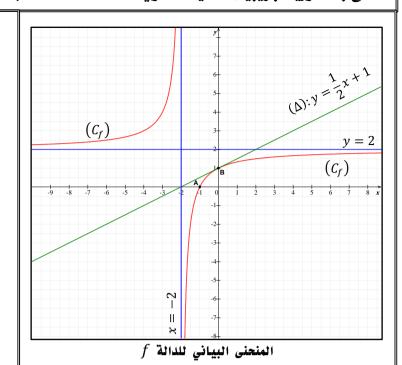
● لرسم المماس (△) يكفي تعيين نقطتين اعتبارا من المعادلة:

$$(\Delta): y = \frac{1}{2}x + 1$$

x	-2	0
γ	0	1

(0;1) و (-2;0) فيصبح المماس (Δ) معرف بالنقطتين

- لرسم المنحنى (C_f) ناخذ بعين الاعتبار ما يلي:
 - . (C_f) المستقيمات المقاربة للمنعنى -
- نقط تقاطع المنعنى (C_f) مع حامل محور الفواصل.
- نقط تقاطع المنحنى (C_f) مع حامل محور التراتيب.



05 56 24 69 06 bouguetof.hamid@yahoo.fr خالبا ما يكوه النجاح حليف هؤلاء الذيه يعملوه بجرأة، ونادرا ما يكوه حليف المتردديه الذيه يتهيبوه المواقف ونتائجها