

طريقك نحو البكالوريا

الشعب:

علوم تجريبية | رياضيات | تقني رياضي | تسيير وإقتصاد

دراسة دالة لوغارتمية حراسة دالة لوغارتمية

إعداد الأستاذ:

قويسم إبراهيم الخليل

آخر تحدیث:

نعتبر الدالة f المعرفة على المجال]0; $+\infty$ [كما يلي:

$$f(x) = x + \frac{1}{2} - \ln x + \frac{1}{2} (\ln x)^2$$

. $(o; ec{t}, ec{f})$ تمثيلها البياني في مستوٍ منسوب إلى المعلم المتعامد المتجانس (\mathcal{C}_f)

اً أراحسب $\lim_{x \to 0} [f(x)]$ ثم فسر النتيجة هندسيا.

 $\lim_{x\to+\infty}[f(x)]$ ب/ احسب

 $x = [1; +\infty[$ وأن لكل x من المجال $[0; 1] = [1; +\infty[$ وأن لكل x من المجال $[0; 1] = [1; +\infty[$ وأن لكل x من المجال $x = [1; +\infty[$ وأن لكل $x = [1; +\infty[]]$

 $[0; +\infty]$.]0; +∞ [المجال]∞+

$$f'(x) = \frac{x - 1 + \ln x}{x}$$

f هكل جدول تغيرات الدالة f .

- . (C_f) والمنحني $y=x+rac{1}{2}$ دو المعادلة $y=x+rac{1}{2}$ والمنحني (3)
- عين احداثيي النقطة ω من (C_f) التي يكون فيها المماس (T) موازيا للمستقيم ω عن احداثي النقطة ω عن المستقيم ω . (T)

 $0;+\infty$ أ/ بين أنه من أجل كل x من المجال

$$f''(x) = \frac{2 - \ln x}{x^2}$$

ب/ استنتج أن المنحنى (C_f) يقبل نقطة انعطاف يطلب تعيين احداثييها.

- . (C_f) و (T)، (D) و (5
- ناقش بيانيا حسب قيم الوسيط الحقيقى m عدد حلول المعادلة: (6)

$$f(x) = x - 2m$$

 $\lim_{\substack{x > 0 \ x \to 0}} [f(x)]$ أ/ حساب (1

$$\bullet \lim_{\substack{x \to 0}} [f(x)] = \lim_{\substack{x \to 0}} \left[x + \frac{1}{2} - \ln x + \frac{1}{2} (\ln x)^2 \right]$$

$$= \lim_{\substack{x \to 0 \\ x \to 0}} \left[x + \frac{1}{2} + \underbrace{\ln x}_{-\infty} \underbrace{\left(\frac{1}{2} \ln x - 1 \right)}_{-\infty} \right]$$

$$= +\infty$$

- التفسير الهندس<u>ي:</u>

x=0 يقبل مستقيم مقارب أفقى بجوار $\infty+$ معادلته (\mathcal{C}_f

 $\lim_{x\to +\infty} [f(x)]$ جساب

$$\bullet \lim_{x \to +\infty} [f(x)] = \lim_{x \to +\infty} \left[x + \frac{1}{2} - \ln x + \frac{1}{2} (\ln x)^2 \right]$$

$$= \lim_{x \to +\infty} \left[\underbrace{x}_{+\infty} + \frac{1}{2} + \underbrace{\ln x}_{+\infty} \underbrace{\left(\frac{1}{2} \ln x - 1\right)}_{+\infty} \right]$$

$$= +\infty$$

 $: [1; +\infty[$ من x من المجال $(x-1) + \ln x \le 0:]0; 1]$ وأنّ لكل x من المجال (2

$$: (x-1) + \ln x \ge 0$$

نضع: الدالة h المعرفة على $]0;+\infty[$ بـ:

$$h(x) = x - 1 + \ln x$$

لدينا:

$$h'(x) = 1 + \frac{1}{x} = \frac{x+1}{x}$$

لدينا: h'(x) > 0 ولدينا: 6 ومنه

x	0	1	+∞
h'(x)		+	
h(x)	-8	0	+∞

 $(x-1)+\ln x \leq 0$:]0; 1] من جدول تغيرات الدالة h نجد أن: لكل x من المجال $(x-1)+\ln x \leq 0$ وأنّ لكل x من المجال $(x-1)+\ln x \geq 0$: [1; $+\infty$ [

$$f'(x) = \frac{x-1+\ln x}{x}$$
:]0; + ∞ [ب/ تبیین أنّه من أجل كل من

$$f'(x) = 1 - \frac{1}{x} + \frac{1}{2} \frac{2}{x} \ln x$$
$$= \frac{x - 1 + \ln x}{x}$$

h(x) من إشارة البسط أي من إشارة f'(x) من إشارة x>0

f : f الدالة جدول تغيرات الدالة

x	0	1	+∞
f'(x)	_	0	+
f(x)	+∞	$\frac{3}{2}$	+∞

 $:(\mathcal{C}_f)$ والمنحني (D) دراسة الوضع النسبي بين المستقيم (3

f(x) - y ندرس إشارة الفرق

$$f(x) - y = 0 \Rightarrow \ln x \left(\frac{1}{2} \ln x - 1\right) = 0$$

$$\Rightarrow \begin{cases} \ln x = 0 \\ \frac{1}{2} \ln x - 1 = 0 \end{cases}$$

$$\Rightarrow \begin{cases} x = 1 \\ \ln x = 2 \end{cases}$$

$$\Rightarrow \begin{cases} x = 1 \\ x = 2 \end{cases}$$

ومنه:

x	0	1		e^2	+∞
$\ln x$	_	0	+		+
$\frac{1}{2}\ln x - 1$	_		_	0	+
f(x) - y	+	0	_	0	+

- الوضعية:
- $]0;1[\ \cup\]e^2;+\infty[\$ لما: (D) فوق $\left(\mathcal{C}_f
 ight)$ •
- $B\left(e^2;e^2+rac{1}{2}
 ight)$ وَ $A\left(1;rac{3}{2}
 ight)$ وَ $A\left(1;rac{3}{2}
 ight)$
 - .]1; e^2 [الما: (D) تحت (C_f) •
- (D) تعيين احداثيى النقطة (C_f) من (C_f) التى يكون فيه المماس ((C_f) موازيا للمستقيم (4

المماس (T) يوازى المستقيم (D) معناه:

$$f'(a) = 1 \Rightarrow \frac{a - 1 + \ln a}{a} = 1$$

$$\Rightarrow a - 1 + \ln a = a$$

$$\Rightarrow \ln a = 1$$

$$\Rightarrow a = e$$

ومنه:

$$(T): y = f'(e)(x - e) + f(e)$$

$$= x - e + e + \frac{1}{2} - 1 + \frac{1}{2}$$

$$= x$$

 $\omega(e;e)$ في النقطة ا (C_f) مماس لـ الذن المستقيم

$$f''(x) = \frac{2-\ln x}{x^2}$$
:]0; +∞[من أجل كل $f''(x) = \frac{2-\ln x}{x^2}$ (5)

$$f''(x) = \frac{\left(1 + \frac{1}{x}\right)x - (x - 1 + \ln x)}{x^2}$$
$$= \frac{x + 1 - x + 1 - \ln x}{x^2}$$
$$= \frac{2 - \ln x}{x^2}$$

ب/ استنتاج أن المنحني (C_f) يقبل نقطة انعطاف يطلب تعيين احداثييها:

$$(2 - \ln x)$$
 من إشارة $f''(x)$ ومنه إشارة $x^2 > 0$

$$2 - \ln x = 0 \Rightarrow \ln x = 2$$
$$\Rightarrow x = e^2$$

ومنه:

X	0		e^2	+∞
f'(x)	,	_	0	+

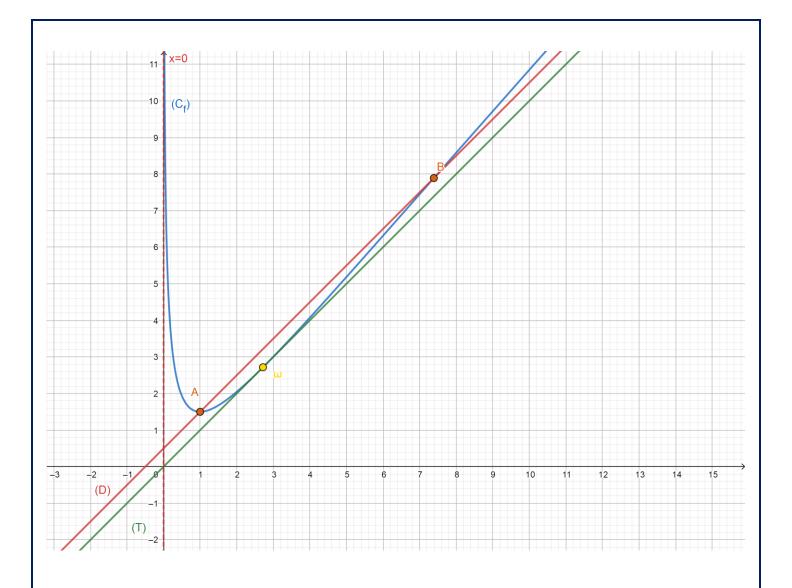
لدينا f''(x) تنعدم وتغير اشارتها

$$B\left(e^2;e^2+rac{1}{2}
ight)$$
 ومنه المنحني $\left(\mathcal{C}_f
ight)$ يقبل نقطة انعطاف

6) التمثيل البياني:

خطوات التمثيل على معلم متعامد ومتجانس:

- x=0 نرسم المستقيم المقارب: •
- (D) نرسم المستقيم المقارب المائل ullet
- (C_f) مع (D) نعین A و B نقط تقاطع \bullet
 - نرسم المماس: (T)
- $\binom{C_f}{f}$ نرسم و ثم باستعمال جدول تغیرات الدالة f نرسم •



7) المناقشة البيانية:

 $y_m = x - 2m$:مع المستقيمات ذات المعادلة هي فواصل نقط تقاطع المنحني ${C_f \choose c}$ مع المستقيمات ذات المعادلة: ومنه:

لما
$$m>0$$
 أي $m>0$ المعادلة لا تقبل حلول $m>0$ أي $m=0$ أي $m=0$ المعادلة تقبل حل مضاعف لما $-2m=0$ أي $-2m<0$ أي $-2m<0$ المعادلة تقبل حلان $0<-2m<\frac{1}{2}$ لما $-2m=\frac{1}{2}$ أي $m=-\frac{1}{4}$ المعادلة تقبل حلان أحدهما مضاعف لما $-2m=\frac{1}{2}$ لما $-2m>\frac{1}{2}$ لما $-2m>\frac{1}{2}$

▶ بالتوفيق في شهادة البكالوريا