

للتمرين الثالث: (04 نقاط) مادة: الرياضيات // الشيعبة: تسيين واقتصاد // بكالوريا 2024 اختبار في مادة: الرياضيات // الشيعبة: تسيين واقتصاد // بكالوريا 2024 التمرين الثالث: (04 نقاط)

المستوي منسوب إلى المعلم المتعامد والمتجانس (0; 1, 1) المستوي منسوب إلى المعلم المتعامد والمتجانس الم $\mathbb R$ في الشكل المقابل ، (C_f) التمثيل البياني لدالة f معرّفة على والذي يقطع حامل محور الفواصل في نقطتين فاصلتاهما I و a A(1; 0) مماس المنحني C_f في النقطة Tبقراءة بيانية: ا) عين f(1) و f'(1) ثمّ أعط معادلة للمماس (T)llagrang 3 2) برر أن A نقطة انعطاف لـ (Cf التمرين الأول: (44) نشاط) $f(x) \times f'(x) = 0$ المعادلة (3) حل في \mathbb{R} المتعالية المعدية المعرفة بدأ 0 = 10 و من أجل كان F (4 دالة أصلية للذالة f على R – حدّد حسب قيم x إشارة f(x) ثمّ استنتج اتجاه تغيّر الذالة F التمرين الرابع: (08 نقاط) $f(x) = 1 + \frac{1 + 2 \ln x}{r^2}$:= $[0; +\infty)$ (C_f) تمثيلها البياني في المستوي المنسوب إلى المعلم المتعامد والمتجانس $(\overline{t}, \overline{f})$

الحسب f(x) الحسب $\lim_{x \to +\infty} f(x)$ و $\lim_{x \to 0} f(x)$ ثمّ فسّر النتيجتين هندسيا. (1) الحسب f(x)

$$f'(x) = \frac{-4 \ln x}{x^3}$$
،]0;+∞0] ، من]∞+;0[، $\frac{-4 \ln x}{x^3}$ ، (2) $f'(x) = \frac{-4 \ln x}{x^3}$. (2) $f'(x) = \frac{-4 \ln x}{x^3}$ ، (2) $f'(x) = \frac{-4 \ln x}{x^3}$. (2) $f'(x) = \frac{-4 \ln x}{x^3}$

0,52<lpha
حيث α حيث α (c_f) يقطع حامل محور الفواصل في نقطة وحيدة فاصلتها α حيث 0,53< α
(α) بين أنّ المنحني (c_f) يقطع حامل محور الفواصل في نقطة وحيدة فاصلتها α حيث α (α) (α) بين أنّ المنحني (α) يقطع حامل محور الفواصل في نقطة وحيدة فاصلتها α حيث α (α) (α) (α) بين أنّ المنحني (α) يقطع حامل محور الفواصل في نقطة وحيدة فاصلتها α حيث α (α) (α

12 in the data that is

- (C_f) و (Δ) الحسب f(e) ثم ارسم کلاً من (Δ) و (C_f)
-]0;+∞[الثبت ان $h:x\mapsto \frac{1+2\ln x}{x^2}$ دالة أصلية للذالة $h:x\mapsto \frac{1+2\ln x}{x^2}$ على المجال (5)
 - ب) استنتج \mathcal{A} مساحة الحيّز المستوي المحدّد بـ (C_f) و (Δ) والمستقيمين اللّذين معادلتا هما: x = e ، x = 1

 $\mathcal{U}_{n+1} = 2\mathcal{U}_{n+1} + 1 = i_1 = i_1$

BAC2024//SSA24//CH09R18

اختبار في مادة: الرياضيات // الشعبة: تسيير واقتصاد // بكالوريا 2024

المُوضِعَة الثاني : ٢٠ مل على المعرّفة على المناه المناه () in lä llantillet (11) dienes Indonad 2 التمرين الأول: (04 نقاط) (1) Regular in the in the wind let and the addition of $f(x) = 8x^3 + 1 \left(\frac{\varepsilon}{1+1}\right) \mathbb{R}$ a) Lane WI III : الذالة الأصلية للذالة f على $\mathbb R$ والتي تنعدم عند 1 هي الذالة F حيث $F(x) = 2x^4 - 2x^4 + x - 3$ (4) $F(x) = x^4 + x - 2 \quad (1)$ (2) g licits line in set is $\frac{1}{2} = \frac{1}{n^{n+1}} + \frac{1}{2} + \frac{1}{n^{n+1}} + \frac{1}{2} + \frac{1}$ HEALES: (80 isld) القيمة المتوسطة للذالة g على المجال $[-\ln 2; \ln 2]$ هي: $[] <math>\mathbb{R} \mapsto \mathbb{R}^{-x} = [x+1) e^{-x}$ الدرس المجاء تشتير الذالة 1/2 (ج $\frac{1}{2\ln 2}$ (4) 2ln2 (1 (3) للمعادلة $3\ln(x-4) = 3\ln 2$ للمعادلة $3\ln(x-4) = 3\ln 2$ حلق وحيد في المجال $3\pi + (3\pi + 1)$ $\sqrt{10}$ الذالة المعترفة على $\sqrt{10} = \frac{x - 9}{(2 + x)} + x = (x)^{7}$ 9 (ج 1) تشيئها البياني في المستوي المنسوب الى المعام المتيامة والمنجانير 6 (1 للذالة h المعرّفة على $[1, 1] = \ln\left(\frac{1+x}{1-x}\right)$ (1) هي دالة: (1) (1) (1) (1) (4) ب) فردية. وتابين اين من **ج) لا زوجية ولا فردية.** أ) زوجية. التمرين الثاني: (04 نقاط) 0 مسطلة المشاه المشاه (٢) معمدا و الت (٢) ساع المعد و25 (٢) الذالة المعرفة على \mathbb{R} بـ: $P(X) = (2X-1)(X^2 + X - 2)$ الذالة المعرفة على \mathbb{R} بـ: $P(X) = (2X-1)(X^2 + X - 2)$ الدرس إشارة P(X) حسب قدم X من $\mathbb R$ الدرس إشارة P(X) منابعات ((C_1) من $\mathbb R$ الدرس إشارة P(X)2) أ) حل في المجال] $\infty+$; 0 [المعادلة: $0=((\ln x)^2 + \ln x - 2) = 0$ ((()) (()) (()) (()) $(-1) = \frac{1}{2\ln x - 1} \left((\ln x)^2 + \ln x - 2 \right) < 0 = \frac{1}{2\ln x - 1} \left((\ln x)^2 + \ln x - 2 \right) < 0$ () حل في المجال $[-1; +\infty]$ $(\ln(x+1))^2 + \ln(x+1) - 2 = 0$ (3) $y = y \rightarrow 0 = y \rightarrow 0 = y$ التمرين الثالث: (04 نقاط) $u_{n+1} = \frac{3}{4}u_n - \frac{1}{2}$ ، n المتتالية العددية المعرّفة ب $u_0 = 4$ ومن أجل كلّ عدد طبيعي (u_n) 1) احسب u1 و u2 $u_n > -2$ ، n برهن بالتراجع أنه: من أجل كلّ عدد طبيعي n ، 2 - 2·) أنبت أن المتالية (un) متناقصة تماما.

BAC2024//SSA24//CH09R17

 \wedge

اختبار في مادة: الرياضيات // الشعبة: تسيير واقتصاد // بكالوريا 2024 ا) بيّن أنّ المتتالية (v_n) هندسية أساسها <u>3</u> $u_n = 6\left(\frac{3}{4}\right)^n - 2$ ، n بدلالة n ثمّ بيّن أنّه: من أجل كلّ عدد طبيعي n ، 2 ، v_n بدلالة v_n $\lim_{n \to +\infty} u_n \quad (\Rightarrow$ (4 من المجموعين S_n و $T_n = S_n$ (4) احسب بدلالة n كلّا من المجموعين (4 $T_n = \frac{1}{2+u_0} + \frac{1}{2+u_1} + \frac{1}{2+u_2} + \dots + \frac{1}{2+u_n} \quad \mathfrak{s} \quad S_n = v_0 + v_1 + v_2 + \dots + v_n$ التمرين الرابع: (08 نقاط) $g(x) = 1 - (x+1)e^{-x}$ بـ: \mathbb{R} الذالة المعرّفة على \mathbb{R} (I 1) ادرس اتجاه تغيّر الدّالة g $g(x) \ge 0$ ، x ، من أجل كلّ عدد حقيقي x ، $0 \le g(x)$ $f(x) = x + (x+2)e^{-x}$ بـ: \mathbb{R} الذالة المعرّفة على f (II $(O; \overline{i}, \overline{j})$ تمثيلها البياني في المستوي المنسوب إلى المعلم المتعامد والمتجانس $(\overline{C_f})$ $\lim_{x \to \infty} f(x) = +\infty$ الحسب النبي الت $\lim_{x \to \infty} f(x) = +\infty$ الم $f'(x) = g(x) \, \cdot \, x$ بين أنه: من أجل كلّ عدد حقيقي xب) استنتج اتجاه تغيّر الدّالة f ثمّ شكّل جدول تغيّراتها. 0 اكتب معادلة لـ (T) مماس المنحنى (C_{f}) في النقطة ذات الفاصلة (3) بين أن المستقيم (Δ) ذا المعادلة y = x مقارب مائل للمنحني (C_f) عند $(+\infty)$ (Δ) ادرس الوضع النسبي للمنحنى (C_r) والمستقيم (Δ) (C_f) ارسم (Δ) و (Δ) ثم (C_f) \mathbb{R} هي دالة أصلية للذالة $h: x \mapsto (x+2)e^{-x}$ هي دالة أصلية للذالة $h: x \mapsto (x+2)e^{-x}$ على (6)ب) احسب & مساحة الحيز المستوي المحدد بالمنحني (Cf) والمستقيمات التي معادلاتها: x=2, x=0, y=x

الإجابة النموذجية // مادة: الرياضيات // الشعبة: تسيير واقتصاد // بكالوريا 2024

منابع الأمارة (الرمن م الأل)						
العلامة	مجزإة	عناصر الإجابة (الموضوع الأول)				
التمرين الأول (04 نقاط)						
0,5	0,25×2	$u_2 = -\frac{11}{18} \circ u_1 = -\frac{1}{3}$	(1			
1.5	0,75+0,25	–2 < $u_n \le 0$: \mathbb{N} من \mathbb{N} من \mathbb{N} البرهان بالتراجع أنّه من أجل كل n من \mathbb{N} : 0 2	(2			
1,5	0,25×2	. ب) (u_n) متناقصة تماما، $u_{n+1} - u_n = -\frac{1}{6}(u_n + 2)$				
	0,5	$\frac{5}{6}$ ومنه: (v_n) هندسیة أساسها $\frac{5}{6}v_n$ (أ	(3			
1,25	0,25×2	$u_n = 2\left(\frac{5}{6}\right)^n - 2 \cdot v_n = 2\left(\frac{5}{6}\right)^n (-1)$				
	0,25	$\lim_{n \to +\infty} u_n = -2 (\Rightarrow$				
0,75	0,25+0,5	$T_n = 12 \left[1 - \left(\frac{5}{6}\right)^{n+1} \right] - 2(n+1)$, $S_n = 12 \left[1 - \left(\frac{5}{6}\right)^{n+1} \right]$	(4			
التمرين الثاني (04 نقاط)						
1	0,5×2	الإجابة: أ) للمعادلة حلّ وحيد هو ln2–	(1			
1	0,5×2	$\int_{0}^{1} (3x^{2} + 3e^{3x}) dx = [x^{3} + e^{3x}]_{0}^{1} = e^{3} (ب = 1)$	(2			
1	0,5×2	الإجابة: ج) فقط. u_0 ، $u_n = 2^{n+1} - 1$ (بجابة: ج) الإجابة الحالة (ب	(3			
1	0,5×2	$\lim_{x \to +\infty} \left(\frac{\ln(2x)}{1+\ln x} \right) = \lim_{x \to +\infty} \left(\frac{\frac{\ln 2}{\ln x} + 1}{\frac{1}{\ln x} + 1} \right) = 1 (\forall x \in \mathbb{R})$	(4			
	1	التمرين الثالث (04 نقاط)				
1	0,5+0,25×2	$(T): y = -x + 1 \ \cdot \ f'(1) = -1 \ \cdot \ f(1) = 0$	(1			
1	1	من الوضع النسبي لـ(Cf) و A : (T) نقطة انعطاف لـ(Cf)	(2			
1	1	$S = \{ \alpha ; 0 ; 1 \}$: $f'(x) = 0$ f $f(x) = 0$	(3			
1	0,5	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4			
	0,25×2	F متناقصة تماما على كلّ من [α;α[و]∞+;1] ومتزايدة تماما على[1; α]	(4			
ومترايدة لماما على [1, 22] التمرين الرابع (08 نقاط)						
1.0	0,5×2	$\lim_{x \to 0} f(x) = -\infty \lim_{x \to +\infty} f(x) = 1$				
1,5	0,25×2	التفسير الهندسي. التفسير ال	(1			
2,25	1	$f'(x) = \frac{-4 \ln x}{r^3}$ ،]0;+∞[ا) من أجل كان x من]∞+;0[(2			

صفحة 1 من 4

واقتصاد // بكالوريا 2024	الرياضيات // الشعبة: تسيير و	الإجابة النموذجية // مادة: ا
--------------------------	------------------------------	------------------------------

	0,25×2	ب) f متزايدة تماما على [1;0[ومتناقصة تماما على]∞+;1] x 0 1 +∞ $f'(x)$ + ϕ + $f'(x)$	
	0,75		
1	1	f مستمرّة ومتزايدة تماما على [0,52; 0,53] و 0>(0,53) / ×(0,52) ومنه (C_f) يقطع حامل محور الفواصل في نقطة وحيدة فاصلتها α حيث 0,52 < α < 0,53	(3
	0,25	$f(x) - 1 = \frac{1 + 2\ln x}{x^2} $ (1)	
	0,75	$ \begin{aligned} (\Delta) (\Delta_f) : x > \frac{1}{\sqrt{e}} \text{(Deriv} (\Delta) \text{(Deriv} (C_f) : 0 < x < \frac{1}{\sqrt{e}} \\ (\Delta) \cap (C_f) = \left\{ A\left(\frac{1}{\sqrt{e}}; 1\right) \right\} \end{aligned} $	
2,25	0,25 1	$f(e) = 1 + \frac{3}{e^2}$ (-1 -1 -2 -2 -2 -2	(4
	0,5	أ) من أجل كلّ x من]∞+;0[، H'(x)=h(x)	
1	0,5	:ب $\int_{1}^{e} \frac{1+2\ln x}{x^{2}} dx = [H(x)]_{1}^{e} = 3 - \frac{5}{e}$ (ب $\mathcal{A} = (3 - \frac{5}{e})u.a$	(5
	0,5		

الإجابة النموذجية // مادة: الرياضيات // الشعبة: تسيير واقتصاد // بكالوريا 2024

العلامة						
العلامة	مجزإة	عناصر الإجابة (الموضوع الثاني)				
التمرين الأول (04 نقاط)						
1	1	الإجابة: ب) ، (التبرير غير مطلوب)	(1			
1	1	الإجابة: ج) ، (التبرير غير مطلوب)	(2			
1	1	الإجابة: أ) ، (التبرير غير مطلوب)	(3			
1	1	الإجابة: ب) ، (التبرير غير مطلوب)	(4			
		التمرين الثاني (04 نقاط)				
1	1	($P(X)$ سالب تماما على المجالين $2-;\infty-[\ e \]1; \frac{1}{2}$ وموجب تماما على المجالين $P(X)$ المجالين $2; \frac{1}{2}$ ، 1 المجالين $2; \frac{1}{2}$ ، 1	(1			
2	1	أ) مجموعة الحلول هي: $\{e^{-2} \ ; \ e \ ; \sqrt{e}\}$				
2	1	ب) مجموعة الحلول هي: $\sqrt{e}; e^{-2} [\cup] \sqrt{e}; e^{-2}$	(2			
1	1	مجموعة الحلول هي: {e^2-1; e-1}	(3			
التمرين الثالث (04 نقاط)						
0,5	0,5	$u_2 = \frac{11}{8} \cdot u_1 = \frac{5}{2}$	(1			
1	0,75+0,25	$u_n > -2: \mathbb{N}$ من n من l جل عن u_n من البرهان بالتراجع أنّه من الجل كل n من n				
0,5	0,5	$u_{n+1} - u_n = -\frac{1}{4}(u_n + 2)$ ، n ، يعد طبيعي $u_{n+1} - u_n = -\frac{1}{4}(u_n + 2)$ ، n ومنه : (u_n) متناقصة تماما.	(2			
	0,5	$q = \frac{3}{4}$ ، $v_{n+1} = \frac{3}{4}v_n$ ، n بيعي $q = \frac{3}{4}$ ، $v_{n+1} = \frac{3}{4}v_n$ ، n أ) من أجل كلّ عدد طبيعي				
1,5	0,25+0,5	$u_n = v_n - 2 = 6 \left(\frac{3}{4}\right)^n - 2$, $v_n = 6 \left(\frac{3}{4}\right)^n$ ()	(3			
	0,25	$\lim_{n \to +\infty} u_n = -2 (\Rightarrow$				
0,5	0,25×2	$T_n = \frac{1}{2} \left(\left(\frac{4}{3}\right)^{n+1} - 1 \right) \land S_n = 24 \left(1 - \left(\frac{3}{4}\right)^{n+1} \right)$	(4			
التمرين الرابع (08 نقاط)						
1,25	0,75	من اجل کل x من ℝ فان (x) = xe ^{-x} من اجل کل x من x	(1(1			
	0,5	g متناقصة تماما على [0;∞-[ومتزايدة تماما على]∞+;0]	1-1-			
0,5	0,25×2	$g(x) \ge 0$ ومنه: من أجل كل x من \mathbb{R} فإنَ $0 \le g(0) = 0$	(2			
0,75	0,5+0,25	$\lim_{x \to +\infty} f(x) = +\infty j \lim_{x \to -\infty} f(x) = -\infty$	(1(11			
1	0,5	ا) من اجل کل x من ℝ فإن (x) = g(x)	(2			

صفحة 3 من 4

0,25	$\mathbb R$ با الدالة f متزايدة تماما على $\mathbb R$	
0,25		
	x $-\infty$ 0 ∞ $f'(x)$ +0+	
0,25	$\int (x) = 2^{+\infty}$	
0,25	(T): y=2	(3
0,5	$\lim_{x \to +\infty} (f(x) - x) = 0 (1)$	
	$_{+\infty}$ ومنه $y=x$ (Δ): مستقیم مقارب مائل له (C_f) عند $(\Delta): y=x$	(4
0.75]- $\infty;-2[$ من $f(x)-x=(x+2)e^{-x}$ نجد: $f(x)-x=(x+2)e^{-x}$ اسفل (Δ) على] $2-;\infty$	(4
0,70	وأعلى (∆) على]∞+; 2−[ويقطعه في النقطة (2;−2)	
1	f (أ مستمرة ومتزايدة تماما على[1,68-;1,69]	
	$f(-1,69) \times f(-1,68) < 0$	
	ومنه: للمعادلة f(x)=0 حلّ وحيد α حيث α<−1,68 −1,69	
	ب) الرسم: (c)	
0,5	رسم (Δ) و (T) (<u>(</u> ((5
0,5	رسم (C _f) رسم (C _f)	
	X:	
0,5	l) من اجل كل x من ℝ ، (x) + (x) (x) (x) (x) (x) (x) (x)	
0,5	$\mathcal{A} = \int_0^2 (f(x) - x) dx = H(2) - H(0) = \left(3 - \frac{5}{e^2}\right) u \cdot a (\because$	(6
	0,25 0,5 0,75 1 0,5 0,5 0,5	$f'(x)$ 2 $0,25$ $(T): y=2$ $0,5$ $\lim_{x \to +\infty} (f(x)-x)=0$ (1 $0,5$ $\lim_{x \to +\infty} (C_f)$ act $\infty + \infty$ $0,5$ $+\infty$ (C_f) act (C_f) act (Δ) and $(\Delta): y=x$ $0,75$ $]-\infty; -2[$ (Δ) (Δ) (C_f) $0,75$ $]-\infty; -2[$ (Δ) (Δ) $0,75$ $]-0; -2[$ (Δ) (Δ) $0,75$ $]-0; -2[$ (Δ) (Δ) $0,75$ $]-0; -2[$ (Δ) $0,75$ $]-0; -2[$ (Δ) $0,75$ $]-0; -2[$ (Δ) $0,75$ $]-0; -2[$ (Δ) $0,75$ $[-1,69] - 2; -2]$ $0,75$ $[-1,69] - 2; -2]$ $0,6]$ (Δ) $0,6]$ (C_f) $0,5$ (C_f) $0,5$ (C_f) $0,5$ (C_f) $0,5$ (C_f) $0,5$ (C_f) $0,5$ (C_f) $(D,5)$ (C_f) $(D,5)$ (C_f) $(D,5)$ (C_f) $(D,5)$ (C_f) $(D,5)$ (C_f) $(D,5)$

الإجابة النموذجية // مادة: الرياضيات // الشعبة: تسيير واقتصاد // بكالوريا 2024

γ

ملاحظة: تُقبل جميع طرائق الحلّ الصحيحة مع التقيّد بسلّم التنقيط.