

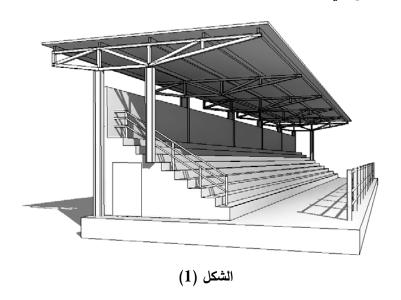
الجمهورية الجزائرية الديمقراطية الشعبية وزارة التربية الوطنية الديوان الوطني للامتحانات والمسابقات

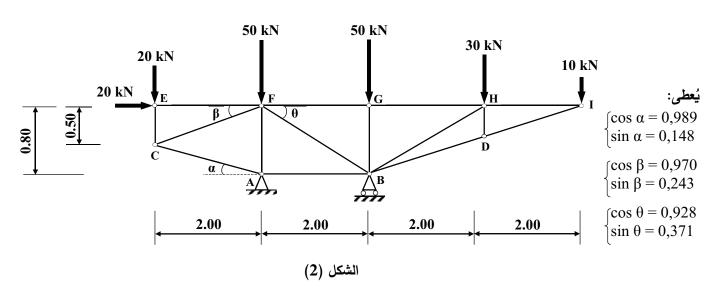
امتحان بكالوريا التعليم الثانوي

الشعبة: تقني رياضي

اختبار في مادة: التكنولوجيا (هندسة مدنية) المدة: 04 سا و30 د

على المترشح أن يختار أحد الموضوعين الآتيين:


الموضوع الأول

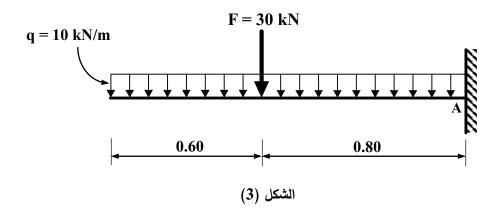

يحتوي الموضوع على (04) صفحات (من الصفحة 1 من 8 إلى الصفحة 4 من 8)

الميكانيك المطبقة: (12 نقطة)

النشاط الأول: الأنظمة المثلثية (07 نقاط)

لتغطية مدرج سباق الخيل الموضح في الشكل(1)، تمت نمذجة أحد الأنظمة المثلثية لهيكل الغماء حسب الشكل (2).

العمل المطلوب:

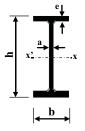

- 1) تأكد من أنّ النظام محدَّد سكونيًا.
- احسب ردود الأفعال عند المسندين A و B علمًا أن المسند A مزدوج والمسند B بسيط.
- 3) احسب الجهود الداخلية في القضبان FG ،FB ،AB ،AF ،CF ،CA ،EF ،EC باستعمال طريقة عزل العُقد مبيّنًا طبيعتَها. (مع تدوين النتائج في جدول)
 - 4) تَحقّق من أنّ المقطع العرضي للقضبان آمن واقتصادي إذا علمت أنّ:
 - القضبان عبارة عن مجنّب زاوية مزدوج (5×50×50) 2L حسب الخصائص المُوضّحة في الجدول الآتي:

المجنب	الوزن (Kg/m)	مساحة المقطع (cm ²)
L (50×50×5)	3,73	4,50

 $-\overline{\sigma}=1600 ext{daN} / ext{cm}^2$ والاجهاد المسموح به $N_{ ext{max}}=125 ext{ kN}$ والاجهاد الناظمي الأقصى في القضيان

النشاط الثاني: الانحناء البسيط المستوي (05 نقاط)

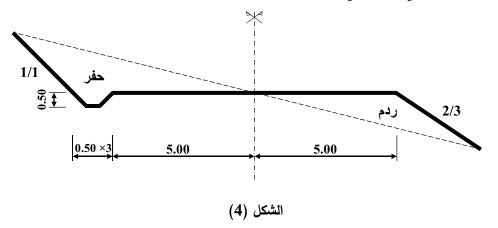
رافدة معدنية مقطعها العرضي مُجنّب IPE مُمثّلة بالشكل الميكانيكي المُوضّح في الشكل (3).



- 1) احسب ردود الأفعال عند الوثاقة A.
- كتب معادلات الجهد القاطع T(x) وعزم الانحناء $M_f(x)$ على طول الرّافدة.
- (3) ارسم المنحنيات البيانية لمعادلات الجهد القاطع T(x) وعزم الانحناء $M_f(x)$ على طول الرّافدة.
 - $M_{
 m fmax}$ وعزم الانحناء الأعظمى $T_{
 m max}$ وعزم الانحناء الأعظمى 4) استنتج قِيَم الجهد القاطع
 - 5) حدّد من الجدول المُرفق المُجنّب الآمن والاقتصادى علمًا أنّ:
- . $\overline{\sigma}=1600 da N / cm^2$ والاجهاد المسموح به $M_{fmax}=33{,}80~kN.m$ عزم الانحناء الأقصى

الجدول المرفق:

التعيين		بعاد	ועל		المقطع	بالنسبة لـ (xx')		
IPE	h b		a	e	S	I/XX	$\mathbf{W}_{/\mathbf{x}\mathbf{x}}$ '	
11 12	(mm)	(mm)	(mm)	(mm)	(cm ²)	(cm ⁴)	(cm ³)	
180	180	91	5,3	8	23,9	1317	146,3	
200	200	100	5,6	8,5	28,5	1943	194,3	
220	220	110	5,9	9,2	33,4	2772	252	
240	240	120	6,2	9,8	39,12	3892	324,3	
270	270	135	6,6	10,2	45,94	5790	428,9	

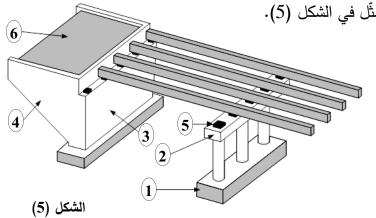


المقطع العرضى لمجنب IPE

البناء: (88 نقاط)

النشاط الأول: الطرق (05 نقاط)

قصد تَوسِعة طريق ولائي أُسندت الدّراسة إلى مكتب مُتخصص، حيث قام بتحضير ملف تقني شاملٍ يشمل وثائق خطية من بينها المظهر العرضي النموذجي حسب الشكل (4).

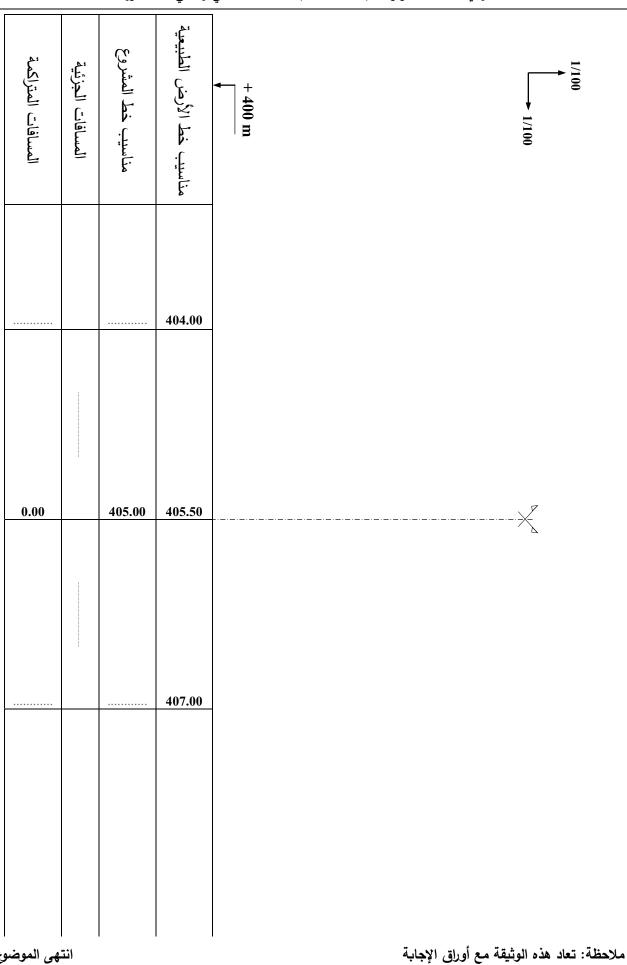


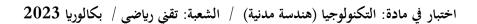
العمل المطلوب:

- ارسم المظهر العرضي على الوثيقة المُرفقة (الصفحة 4 من 8) مع إكمال جميع البيانات على الجدول.

النشاط الثانى: الجسور (03 نقاط)

جسر من الخرسانة المسلحة في إطار الإنجاز مُمثّل في الشكل (5).

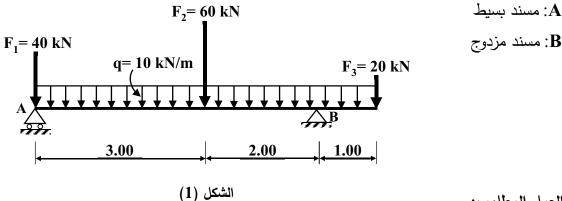



- 1) صنّف الجسر من حيث الشكل.
- 2) سمّ العناصر المرقمة من 1 الى 6.
- 3) اذكر دور كل من العنصرين 5 و6.

انتهى الموضوع الأول

اختبار في مادة: التكنولوجيا (هندسة مدنية) / الشعبة: تقني رياضي / بكالوريا 2023

 \otimes

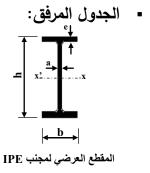

الموضوع الثانى

يحتوي الموضوع على (04) صفحات (من الصفحة 5 من 8 إلى الصفحة 8 من 8)

الميكانيك المطبقة: (12 نقطة)

النشاط الأول: الانحناء البسيط المستوي (07 نقاط)

رافدة معدنية مقطعها العرضي مُجنّب IPE تستند على مسندين A و B مُمثّلة في الشكل (1).


العمل المطلوب:

- 1) احسب ردود الأفعال عند المسندين A و B.
- اكتب معادلات الجهد القاطع T(x) وعزم الانحناء $M_f(x)$ على طول الرّافدة.
- (3) ارسم المنحنيات البيانية لمعادلات الجهد القاطع T(x) وعزم الانحناء $M_f(x)$ على طول الرّافدة.
 - 4) حدّد من الجدول المرفق المجنب الآمن والاقتصادي علمًا أنّ:
- $.\overline{\sigma} = 1600 ext{daN} \, / \, ext{cm}^2$ والاجهاد المسموح به $M_{f\, ext{max}} = 87 \; ext{kN.m}$ والاجهاد المسموح به
 - 5) تَمَّ اقتراح استبدال المجنب IPE برافدة أبعاد مقطعها المستطيل مُمثّلة في الشكل (2).

(2) الشكل

 $ar{\sigma}=1400 ext{daN} \ / \ ext{cm}^2$ - تحقّق من مقاومة مقطع الزّافدة المقتّرح إذا علمت أنّ الاجهاد المسموح به

التعيين		بعاد	\$11		المقطع	(2)	بالنسبة لـ
التعيين			1 & 1	المعطع	()		
IPE	h	b	a	e	S	$\mathbf{I}_{/\mathbf{X}\mathbf{X}}$,	$\mathbf{W}_{/\mathbf{x}\mathbf{x}}$ '
11 12	(mm)	(mm)	(mm)	(mm)	(cm ²)	(cm ⁴)	(cm^3)
240	240	120	6,2	9,8	39,12	3892	324,3
270	270	135	6,6	10,2	45,94	5790	428,9
300	300	150	7,1	10,7	53,81	8356	557,1
330	330	160	7,5	11,5	62,61	11770	713,1
360	360	170	8	12,7	72,73	16270	903,6

النشاط الثاني: الخرسانة المسلّحة (05 نقاط)

شدّاد من الخرسانة المسلّحة ذو مقطع مربع أبعاده 20×30) cm² خاضع لقوة شد مركزية حسب المعطيات التالية:

- $N_{ser} = 160 \text{ kN}$; $N_U = 220 \text{ kN}$ الجهود الناظمية
 - $f_{c28} = 30 \text{ MPa}$ مقاومة الخرسانة:
- . $\eta=1,6$ ، $\gamma_s=1,15$ ، $\mathrm{f_e}=400~\mathrm{MPa}:\mathrm{HA}$ الفولاذ من النوع
 - نوع التشققات: ضارة جدًا

العمل المطلوب:

- 1) احسب مقطع التسليح الطولى للشدّاد.
 - 2) تحقّق من شرط عدم الهشاشة.
 - 3) اقترح رسمًا لتسليح مقطع الشدّاد.

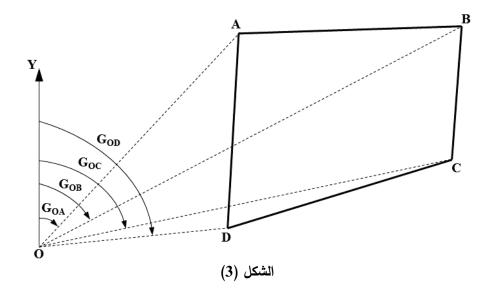
تُعطى العلاقات التالية:

$$A_{s}.f_{e} \geq B.f_{t28}, \quad A_{u} = \frac{N_{u}}{f_{su}}, \quad \overline{\sigma}_{s} = \min\left\{\frac{2}{3}f_{e} ; 110\sqrt{f_{t28} \cdot \eta}\right\}, \quad A = \max(A_{u}; A_{ser})$$

$$\overline{\sigma}_{s} = \min\left\{\frac{1}{2}f_{e} ; 90\sqrt{f_{t28} \cdot \eta}\right\}, \quad A_{ser} = \frac{N_{ser}}{\overline{\sigma}_{s}}, \quad f_{su} = \frac{f_{e}}{\gamma_{s}}, \quad f_{t28} = 0.6 + 0.06f_{c28}$$

■ جدول التسليح:

ئار	المقطع بـ (cm²) لعدد من القضبان									
1 (n	10 9 8 7 6 5 4 3 2 1									
0.78	1.57	2.35	3.14	3.92	4.71	5.50	6.28	7.07	7.85	
1.13	2.26	3.39	4.52	5.65	6.78	7.92	9.05	10.18	11.31	
1.54	3.08	4.62	6.15	7.69	9.23	10.78	12.32	13.85	15.39	
2.01	4.02	6.03	8.04	10.05	12.06	14.07	16.08	18.09	20.10	
3.14	6.28	9.42	12.56	15.70	18.84	21.99	25.13	28.27	31.42	

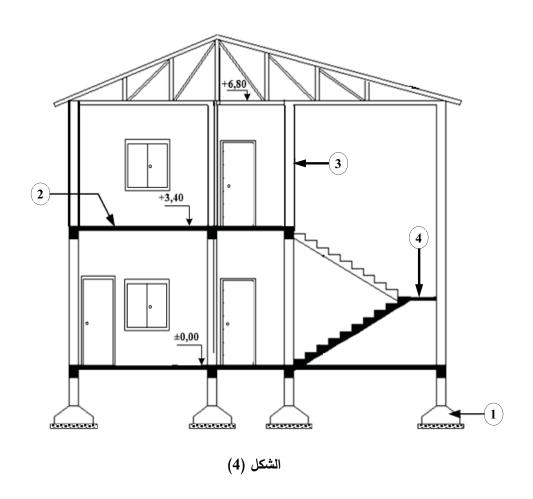

البناء: (80 نقاط)

النشاط الأول: عموميات حول الطبوغرافيا (05 نقاط)

لحساب مساحة قطعة أرض (ABCD) مُوضّحة في الشكل (3)، تمركز الطبوغرافي في المحطة O و رصد النقاط D ، C ، B ، A

النقاط	الاحداثيات القائمة				
	X (m)	Y (m)			
О	100	100			
В	236	164			
С	232	127			
D	170	108			

المسافات	السمت الإحداثي
(m)	(gr)
$L_{OA} = 95.131$	$G_{OA} = 55,685$
$L_{OB} = 150.306$	$G_{OB} = 72,00$
$L_{OC} = 134.733$	$G_{OC} = 87,155$

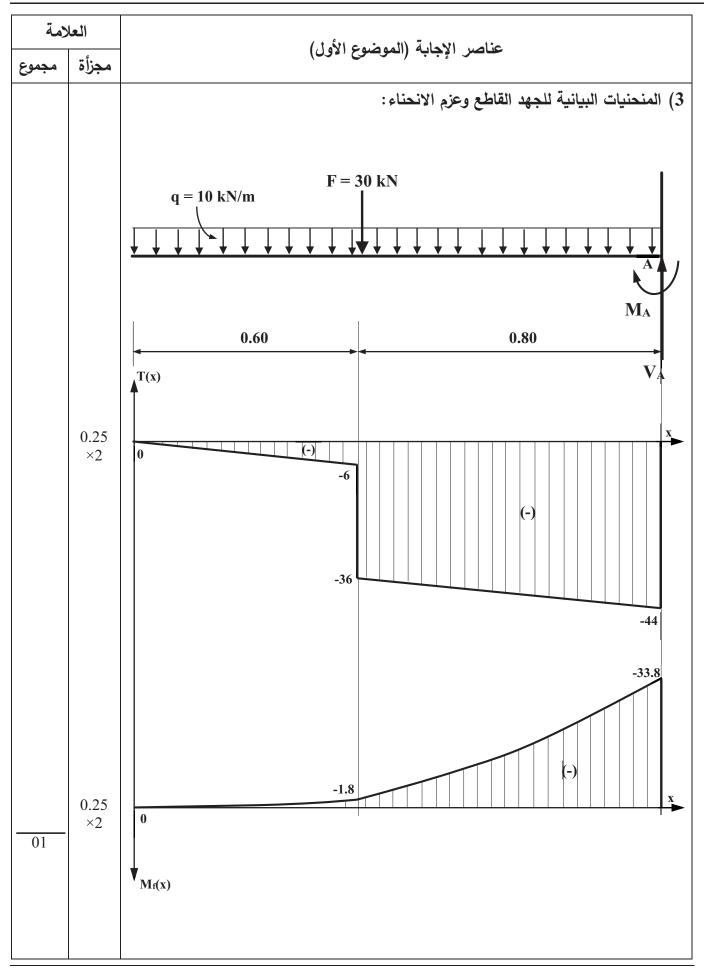


- $L_{
 m OD}$ احسب السّمت الإحداثي $G_{
 m OD}$ و المسافة (1)
- 2) احسب الإحداثيات القائمة للنقطة A بدلالة النقطة (2
- 3) احسب مساحة قطعة الأرض (ABCD) باستعمال الإحداثيات القطبية.
- 4) تحقّق من مساحة قطعة الأرض (ABCD) باستعمال الإحداثيات القائمة.

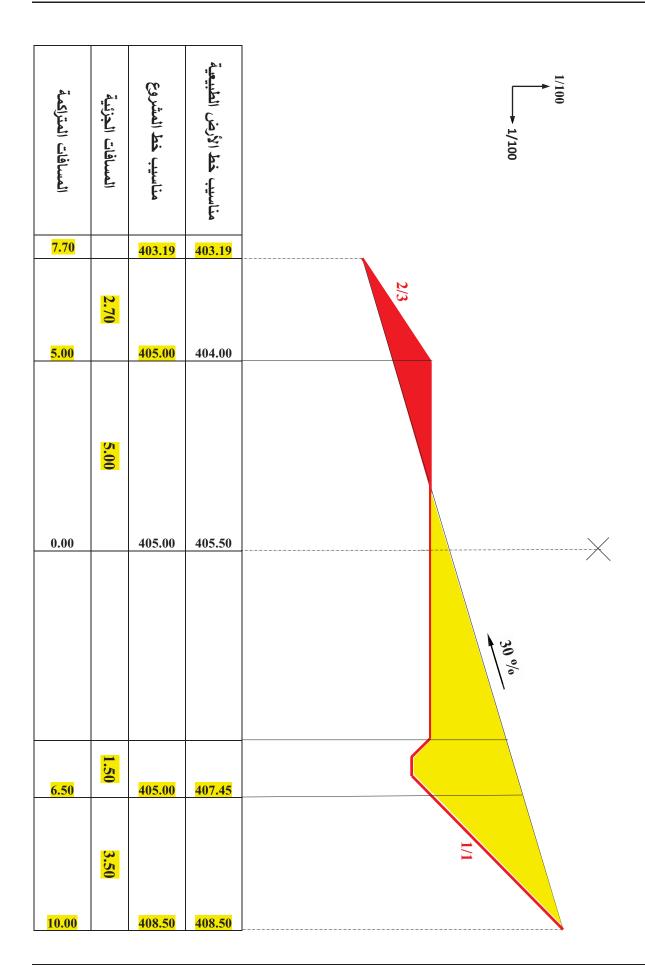
النشاط الثاني: المنشأ العلوي (03 نقاط).

يُمثّل الشكل (4) مقطعًا شاقوليًا لبناية متكوّنة من طابقين.

- 1) سمّ العناصر المرقّمة من 1 إلى 4.
 - 2) حدد دور العنصر رقم 2.
- n=20 احسب ارتفاع القائمة h اعتمادًا على الشكل (4)، علماً أنّ عدد درجات المدرج h
 - 4) استنتج عرض النّائمة g.


رمة	العا	(total content) a dotal malic 52
مجموع	مجزأة	.52عناصر الإجابة (الموضوع الأول)
		الميكانيك المطبقة:
0.5	0.5	(1) التأكد من أن النظام محدد سكونيا: $b = 2n - 3 \rightarrow 15 = 2(9) - 3 \rightarrow 15 = 15$ ومنه النظام محدد سكونيا
	0.25	$\begin{array}{c} . \ B_{\text{B}} \ A \end{array} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$
	0.5	
01.25	0.5	$ ightarrow V_{\rm B} = rac{16 - 40 + 100 + 120 + 60}{2}$ $ ightarrow V_{\rm B} = 128 {\rm kN}$ $ ightarrow V_{\rm A} + V_{\rm B} = 32 + 128 = 160 {\rm kN}$ ومنه العلاقة محققة

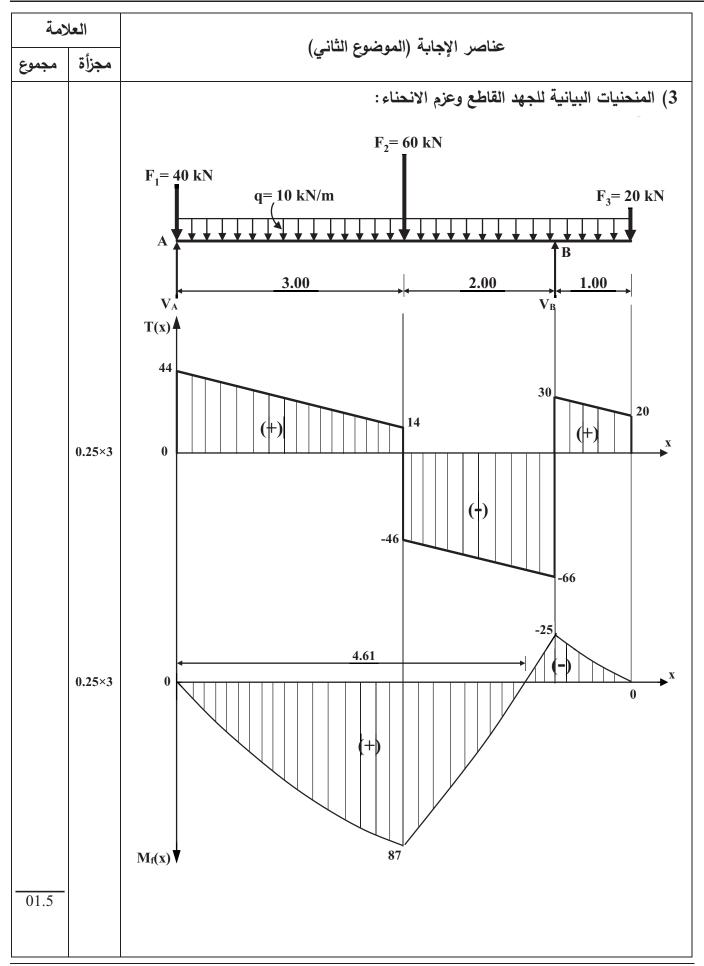
العلامة		/ + \$21 ~ · · · · · · · · · · · · · · · · · ·
مجموع	مجزأة	عناصر الإجابة (الموضوع الأول)
		3) حساب الجهود الداخلية في القضبان:
		20kN N _{EF} :E 53EF
	0.5	$\sum F_{/XX'} = 0 \rightarrow N_{EF} + 20 = 0 \rightarrow \boxed{N_{EF} = -20 \mathrm{kN}(\mathrm{C})}$
	0.5	$\sum_{N_{EC}} F_{/YY'} = 0 \rightarrow -N_{EC} - 20 = 0 \rightarrow \boxed{N_{EC} = -20 \text{kN} (\text{C})}$
		$\Sigma F_{/XX'} = 0 \rightarrow N_{CF}.\cos \beta + N_{CA}.\cos \alpha = 0$ $\rightarrow 0.97N_{CF} + 0.989N_{CA} = 0$ $\Sigma F_{/YY'} = 0 \rightarrow N_{CE} + N_{CF}.\sin \beta - N_{CA}.\sin \alpha = 0$ $\rightarrow 0.243N_{CF} - 0.148N_{CA} = 20$ بعد التعویض نحصل علی جملة معادلتین ذات مجهولین: $\begin{cases} 0.97N_{CF} + 0.989N_{CA} = 0 &(1) \\ 0.243N_{CF} - 0.148N_{CA} = 20 &(2) \end{cases}$ $N_{CF} = \frac{-0.989N_{CA}}{0.97} \text{ i.e.} \text{ i.e.} \text{ i.e.} \text{ i.e.}$ $N_{CF} = \frac{-0.989N_{CA}}{0.97} \text{ i.e.} \text{ i.e.} \text{ i.e.}$
		*
	0.5	$0.243.(\frac{-0.989}{0.97})N_{CA} - 0.148N_{CA} = 20$ $-0.248N_{CA} - 0.148N_{CA} = 20 \rightarrow \boxed{N_{CA} = -50.51 \text{kN(C)}}$ each:
	0.5	$N_{CF} = \frac{-0.989N_{CA}}{0.97} \rightarrow N_{CF} = \frac{-0.989 \times (-50.51)}{0.97}$ $\rightarrow N_{CF} = 51.50 \text{kN} \text{(T)}$


رمة	العا				(† \$1) a	*- *()	7.1.59	-1:-			
مجموع	مجزأة				ع الأول)	(الموضوع	ً الإخاب	عناصر			
	0.5	$\Sigma F_{/XX'} = 0 \rightarrow N_{AB} - H_A - N_{AC}.\cos\alpha = 0$ $\rightarrow N_{AB} = 20 + (-50.51) \times 0.989$ $\rightarrow N_{AB} = -29.95 \mathrm{kN} (\mathrm{C})$ $\Sigma F_{/YY'} = 0 \rightarrow N_{AF} + N_{AC}.\sin\alpha + V_A = 0$									
	0.5	V	$\rightarrow N_{AF} = -(-50.51) \times 0.148 - 32$ $\rightarrow N_{AF} = -24.52 \mathrm{kN}(\mathrm{C})$								
			SO kN :F So N _{FG} N _{FG} N _{FG} N _{FG} N _{FB} N _{FA}								
			·		$\rightarrow N_{F}$	$_{\rm G} + 0.92$ $_{\rm G} + 0.92$	28N _{fB} -	-(-20) $= 29.96$) – (51.: 5	` '	
	0.5		(1)-	→ N _{na}	$\rightarrow \boxed{N_{\rm H}}$ $= 29.9$	$f_{\rm B} = -10$ $6 - 0.92$					
	0.5				=125			,			
			2.7	N T			3. 7	2.7		- جدول النتائ	
	0.5-	$\frac{N_{FG}}{125}$	N _{FB}	N _{AB} 29.95	N _{AF} 24.52	N _{CF} 51.50	N _{CA} 50.51	N _{EF} 20	N _{EC} 20	الجهد الناظمي	
	0.25	شد	انضغاط	انضغاط	انضغاط	شد	انضغاط	انضغاط	انضغاط	الشدة (kN) الطبيعة	
04.25				1	l	I	·	طع المجند	ناومة مقط	4) التحقق من مة	
	0.25		$\sigma_{\text{max}} \leq \overline{\sigma} \rightarrow \frac{N_{\text{max}}}{2S} \leq \overline{\sigma}$								
	0.5	$ ightarrow rac{125 imes 10^2}{2 imes 4.5} \le 1600$ $ ightarrow 1388.89 \prec 1600$ إذن مقطع المجنب آمن واقتصادى									
01 07	0.25			\rightarrow	1388.8	s9 ≺16	900 	ِ اقتصاد <i>ي</i>	نب امن و	إذن مقطع المجذ	

رمة	العا	/ t \$21 a · t()
مجموع	مجزأة	عناصر الإجابة (الموضوع الأول)
		النشاط الثاني: 1) حساب ردود الأفعال:
		q = 10 kN/m 0.60 0.80 VA
	0.25	$\sum F_{/XX'} = 0 \rightarrow \boxed{H_A = 0}$ $\sum F_{/YY'} = 0 \rightarrow V_A - F - (q.L) = 0$
	0.25	$\rightarrow V_A = 30 + (10 \times 1.4)$ $\rightarrow V_A = 44 \text{ kN}$
01	0.5	$\sum M_{/A} = 0 \rightarrow M_A - (F \times 0.8) - (q \times L \times \frac{L}{2}) = 0$ $\rightarrow M_A = (30 \times 0.8) + (10 \times 1.4 \times 0.7)$ $\rightarrow M_A = 33,8 kN.m$ $\therefore M_A = 33,8 kN.m$ $\therefore M_A = 33,8 kN.m$ $\therefore M_A = 33,8 kN.m$
	0.25	$T(x) = -q.x \rightarrow \boxed{T(x) = -10x}$
	0.125 ×2	$\begin{cases} x = 0 \rightarrow T(0) = 0 \\ x = 0.6 \rightarrow T(0.6) = -6 \text{ kN} \end{cases}$
	0.25	$M_f(x) = -q(x.\frac{x}{2}) \rightarrow M_f(x) = -5x^2$
	0.125 ×2	$\begin{cases} x = 0 \to M_f(0) = 0 \\ x = 0.6 \to M_f(0.6) = -1.8 \text{ kN.m} \end{cases}$

رْمة (العلا	(t \$t c + t t T L N L L L L L L L L
مجموع	مجزأة	عناصر الإجابة (الموضوع الأول)
		$coldon 20.6 \leq x \leq 1.4$ $coldon 30.60$ $coldon 30$
02	0.25 0.125 ×2 0.25 0.125 ×2	

رمة	العلا	/ + E+1 - · · +1\ T 1		
مجموع	مجزأة	عناصر الإجابة (الموضوع الأول)		
		العظمى للجهد القاطع وعزم الانحناء: نية نستنتج:	,	`
0.25	0.125 ×2	$T_{max} = 44 \text{ kN}$; $M_{fmax} = 33.8 \text{ kN.m}$		
		الآمن والاقتصادي: $rac{M_{ m fmax}}{M_{ m fmax}} < rac{M_{ m fmax}}{M_{ m fmax}}$	يد المجنب	5) تحد
	0.25	$\sigma_{\max} \le \overline{\sigma} \to \frac{M_{f \max}}{W_{/XX'}} \le \overline{\sigma}$ $\to W_{/XX'} \ge \frac{M_{f \max}}{\overline{\sigma}}$		
	0.25	$ → W_{/XX'} ≥ \frac{33.8 \times 10^4}{1600} $ $ → W_{/XX'} ≥ 211.25 $		
0.75	0.25	$ m W_{/XX^{,}} = 252~cm^3$ ومنه المجنب الآمن والاقتصادي 252 $ m IPE220$.	ول نختار	من الجدو
05				البنسنسا
			لأول:	النشاط ا
			الجدول:	•
	0.25×3 0.125×	مناسيب خط الأرض الطبيعية:	-	
	5	مناسيب خط المشروع:	-	
	0.25×3	المسافات الجزئية:	-	
	0.5×2	المسافات الافقية على اليمين و على اليسار	-	
	0.125× 5	المسافات المتراكمة:	-	
03.75				الرسم:
	0.125× 2	رسم خط الأرض الطبيعية:	-	
	0.5	رسم خط المشروع:	-	
01.25	0.25	تمثيل ميل خط الأرض الطبيعية:	-	
05	0.25	تمثيل مناطق الحفر والردم:	-	



العلامة		(t \$t)
مجموع	مجزأة	عناصر الإجابة (الموضوع الأول)
0.5	0.5	النشاط الثاني: 1) تصنيف الجسر من حيث الشكل: الشكل (5) يمثل جسر ذو روافد مستقيمة
01.5	0.25×6	2) تسمية العناصر من 1 إلى 6: 1: الأساس (أو قاعدة أساس)
	0.5	مرحصه. يمدن فبون إجابه المتراسخ في كان تسميه الحد العنصرين و أو 4 بـ الملك دور العنصر رقم 5 والعنصر رقم 6: دور العنصر رقم 5: هو توزيع الحمولات على مناطق الارتكاز، كما تسمح بحركة انسحابية أو دورانية لروافد سطح الجسر دون حدوث أي احتكاك الى جانب امتصاص الصدمات الناتجة عن سير العربات.
01	0.5	• دور العنصر رقم 6: هو حماية تربة الردم خلف المتكأ من الهبوط التفاضلي، وضمان استمرارية السير في بداية ونهاية الجسر (تدعيم الردم خلف المتكأ).
03		
20		

العلامة		(*)**!
مجموع	مجزأة	عناصر الإجابة (الموضوع الثاني)
		الميكانيك المطبقة: النشاط الاول: $ (1 + \frac{1}{4}) $ $E_2 = 60 \text{ kN} $ $E_1 = 40 \text{ kN} $
		q = 10 kN/m $q = 10 kN/m$ $q = 10 k$
	0.25	$\sum F_{/XX'} = 0 \rightarrow H_{B} = 0$ $\sum F_{/YY'} = 0 \rightarrow V_{A} + V_{B} = F_{1} + F_{2} + F_{3} + (q.L)$ $\rightarrow V_{A} + V_{B} = 40 + 60 + 20 + (10 \times 6)$ $\rightarrow V_{A} + V_{B} = 180 \text{ kN}$ $\sum M_{/B} = 0 \rightarrow -(F_{1} \times 5) - (F_{2} \times 2) - (q \times 6 \times 2) + (F_{3} \times 1) + (V_{A} \times 5) = 0$ $\rightarrow V_{A} = \frac{200 + 120 + 120 - 20}{5}$
	0.5	
01.25	0.5	$ ightarrow \overline{V_{ m B}} = 96{ m kN}$ $V_{ m A} + V_{ m B} = 84 + 96 = 180 { m kN}$ ومنه العلاقة محققة

العلامة		/ *1**t(a *- *1\)
مجموع	مجزأة	عناصر الإجابة (الموضوع الثاني)
		2) كتابة معادلات الجهد القاطع وعزم الانحناء: $0 \le x \le 3$
	0.25	$\mathbf{F}_{1} = 40 \text{ kN} \qquad \mathbf{T}(\mathbf{x}) = \mathbf{V}_{A} - \mathbf{F}_{1} - \mathbf{q}.\mathbf{x} \rightarrow \boxed{\mathbf{T}(\mathbf{x}) = -10\mathbf{x} + 44}$
	0.125	$\begin{cases} x = 0 \rightarrow T(0) = 44 \text{ kN} \\ x = 3 \rightarrow T(3) = 14 \text{ kN} \end{cases}$
	×2	$(x = 3 \rightarrow T(3) = 14 \text{ kN})$
		$M_{f}(x) = V_{A}.x - F_{1}.x - q(x.\frac{x}{2})$
	0.25	V_A $T(x) \rightarrow M_f(x) = -5x^2 + 44x$
	0.125	$\begin{cases} x = 0 \rightarrow M_f(0) = 0 \\ x = 3 \rightarrow M_f(3) = 87 \text{ kN.m} \end{cases}$
	×2	$(x = 3 \rightarrow M_f(3) = 8 / kN.m$ $:3 \le x \le 5 \blacksquare$
		$T(x) = V_A - F_1 - F_2 - q.x$
	0.25	F_1 F_2 $M_f(x)$ $\rightarrow T(x) = -10x - 16$
	0.125	$\begin{cases} x = 3 \rightarrow T(3) = -46 \text{ kN} \\ x = 5 \rightarrow T(5) = -66 \text{ kN} \end{cases}$
	×2	$x = 5 \rightarrow T(5) = -66 \mathrm{kN}$
		$M_{f}(x) = V_{A}.x - F_{1}.x - F_{2}(x - 3) - q(x.\frac{x}{2})$
	0.25	V_A $\longrightarrow M_f(x) = -5x^2 - 16x + 180$
	0.125	$\begin{cases} x = 3 \rightarrow M_f(3) = 87 \text{ kN.m} \\ x = 5 \rightarrow M_f(5) = -25 \text{ kN.m} \end{cases}$
	×2	$ (x = 5 \rightarrow M_f(5) = -25 \text{ kN.m} $ $:5 \le x \le 6 \blacksquare $
		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
		الجزء المقطوع على اليمين الجزء المقطوع على اليسار

العلامة		
مجموع	مجزأة	عناصر الإجابة (الموضوع الثاني)
03	0.25 0.125 ×2 0.25 0.125 ×2	$T(x) = V_A - F_1 - F_2 - q.x + V_B \rightarrow T(x) = -10x + 80$ $\begin{cases} x = 5 \rightarrow T(5) = 30 \text{ kN} \\ x = 6 \rightarrow T(6) = 20 \text{ kN} \end{cases}$ $\begin{cases} x = 5 \rightarrow M_f(8) = -5x^2 + 80x - 300 \end{cases}$ $\begin{cases} x = 5 \rightarrow M_f(5) = -25 \text{kN.m} \\ x = 6 \rightarrow M_f(6) = 0 \end{cases}$ $\begin{cases} x = 5 \rightarrow M_f(6) = 0 \end{cases}$ $\begin{cases} x = 5 \rightarrow M_f(5) = -25 \text{kN.m} \\ x = 6 \rightarrow M_f(6) = 0 \end{cases}$ $\begin{cases} x = 5 \rightarrow M_f(5) = -25 \text{kN.m} \\ x = 6 \rightarrow M_f(6) = 0 \end{cases}$ $\begin{cases} x = 5 \rightarrow M_f(5) = -25 \text{kN.m} \\ x = 6 \rightarrow M_f(6) = 0 \end{cases}$ $\begin{cases} x = 5 \rightarrow M_f(5) = -25 \text{kN.m} \\ x = 6 \rightarrow M_f(6) = 0 \end{cases}$ $\begin{cases} x = 5 \rightarrow M_f(5) = -25 \text{kN.m} \\ x = 6 \rightarrow T(6) = 20 \text{ kN} \end{cases}$ $\begin{cases} x = 5 \rightarrow M_f(5) = -25 \text{kN.m} \\ x = 6 \rightarrow M_f(6) = 0 \end{cases}$ $\begin{cases} x = 5 \rightarrow M_f(5) = -25 \text{kN.m} \\ x = 6 \rightarrow M_f(6) = 0 \end{cases}$ $\begin{cases} x = 5 \rightarrow M_f(5) = -25 \text{kN.m} \\ x = 6 \rightarrow M_f(6) = 0 \end{cases}$ $\begin{cases} x = 5 \rightarrow M_f(5) = -25 \text{kN.m} \\ x = 6 \rightarrow M_f(6) = 0 \end{cases}$ $\begin{cases} x = 5 \rightarrow M_f(6) = 0 \end{cases}$
		1 () () () () () () () () () (

العلامة		/ *1**(
مجموع	مجزأة	عناصر الإجابة (الموضوع الثاني)
	0.25	تحدید المجنب الآمن والاقتصادي: $\sigma_{\max} \leq \overline{\sigma} \to \frac{M_{f\max}}{W_{/XX'}} \leq \overline{\sigma}$
	0.25	$\rightarrow W_{/XX'} \ge \frac{M_{fmax}}{\overline{\sigma}}$ $\rightarrow W_{/XX'} \ge \frac{87 \times 10^4}{1600}$ $\rightarrow W_{/XX'} \ge 543.75$
0.75	0.25	من الجدول نختار $W_{/XX'} = 557.1 \text{ cm}^3$ ومنه المجنب الآمن والاقتصادي
	0.25	(5) $\sigma_{\max} \leq \overline{\sigma} \rightarrow \frac{M_{fmax}}{W_{fmax}} \leq \overline{\sigma}$ $\rightarrow \frac{M_{fmax}.Y_{max}}{I_{fmax}} \leq \overline{\sigma}$ $\rightarrow \frac{M_{fmax}.Y_{max}}{\frac{bh^3}{12}} \leq \overline{\sigma}$ $\rightarrow \frac{6M_{fmax}}{\frac{bh^3}{12}} \leq \overline{\sigma}$ $\rightarrow \frac{6M_{fmax}}{\frac{bh^2}{2}} \leq \overline{\sigma}$ $\rightarrow \frac{6\times87\times10^4}{10\times20^2} \leq 1400$ $\rightarrow 1305 \prec 1400$
0.5	0.125	إدل المفاومة محفقة
07		

العلامة		/ *!**!
مجموع	مجزأة	عناصر الإجابة (الموضوع الثاني)
		النشاط الثاني:
		1) حساب مقطع التسليح الطولي للشداد:
		أ- الحالة الحدية النهائية ELU:
		• مقاومة الفولاذ: معاومة الفولاذ:
	0.5	$f_{su} = \frac{f_e}{\gamma_s} \rightarrow f_{su} = \frac{400}{1.15} \rightarrow \boxed{f_{su} = 347.83MPa}$
		• مقطع التسليح:
	0.5	$A_{u} = \frac{N_{u}}{f_{su}} \rightarrow A_{u} = \frac{220 \times 10^{2}}{347.83 \times 10} \rightarrow A_{u} = 6.32 \text{ cm}^{2}$
		ب- الحالة الحدية للتشغيل ELS:
		• مقاومة الخرسانة للشد:
		$f_{t28} = 0.6 + 0.06f_{c28} \rightarrow f_{t28} = 0.6 + (0.06 \times 30)$
	0.5	$\rightarrow \boxed{\mathbf{f}_{t28} = 2.4 \text{MPa}}$
		• الاجهاد المسموح به للفولاذ:
		$\overline{\sigma}_{s} = \min \left\{ \frac{1}{2} f_{e} ; 90 \sqrt{f_{t28} \cdot \eta} \right\}$
		$\overline{\sigma}_{s} = \min\left\{\frac{1}{2} \times 400 ; 90\sqrt{2.4 \times 1.6}\right\}$
		$\overline{\sigma}_{s} = \min\{200; 176.36\}$
	0.5	$\overline{\sigma}_{s} = 176.36 MPa$
		• مقطع التسليح:
		$A_{ser} = \frac{N_{ser}}{\overline{\sigma}_{s}} \rightarrow A_{ser} = \frac{160 \times 10^{2}}{176.36 \times 10}$
	0.5	$\rightarrow A_{\rm ser} = 9.07 \rm cm^2$
		ت - مقطع التسليح النظري:
	0.5	$A = \max(A_u; A_{ser}) \rightarrow A = \max(6.32; 9.07) \rightarrow A = 9.07 \text{ cm}^2$

العلامة		/ *!#ti a ** ti\ 7 1 Nti -1*a
مجموع	مجزأة	عناصر الإجابة (الموضوع الثاني)
03.5	0.5	\dot{x} - مقطع التسليح الحقيقي: من الجدول نختار: من الجدول ختار: $AHA14 + 4HA12 \rightarrow A_{\rm S} = 6.15 + 4.52 = 10.67~{\rm cm}^2$ ملاحظة: للأستاذ المصحح واسع النظر في قبول باقي الخيارات.
0.5	0.5	2) التحقق من شرط عدم الهشاشة: $A_{s}.f_{e} \geq B.f_{t28} \rightarrow 10.67 \times 400 \geq (30 \times 30) \times 2.4 \\ \rightarrow 4268 \succ 2160$
01	01	شرط عدم الهشاشة محقق (3 رسم تسليح مقطع الشداد:
05		

العلامة		/ *!#*!
مجموع	مجزأة	عناصر الإجابة (الموضوع الثاني)
		البناء:
		النشاط الأول:
		$ m L_{OD}$ والمسافة والمسافة الإحداثي والمسافة المسافة المسافة الإحداثي والمسافة المسافة المسافقة المسافق
		أ- السمت الاحداثي G _{OD} :
	0.25	$\Delta X_{OD} = X_D - X_O = 170 - 100 \rightarrow \Delta X_{OD} = 70 \mathrm{m}$
	0.25	$\Delta Y_{OD} = Y_D - Y_O = 108 - 100 \rightarrow \Delta Y_{OD} = 8 \mathrm{m}$
	0.25	$tg(g) = \frac{ \Delta X_{OD} }{ \Delta Y_{OD} } = \frac{70}{8} = 8.75 \rightarrow g = 92.76 gr$
	0.25	$ \Delta X_{OD} \succ 0 \Delta Y_{OD} \succ 0 $ $ \rightarrow G_{OD} = g \rightarrow G_{OD} = 92.76 gr$
01		ب-المسافة L _{OD} :
	0.25	$L_{OD} = \sqrt{(\Delta X_{OD})^2 + (\Delta Y_{OD})^2} = \sqrt{70^2 + 8^2}$
0.5	0.25	$L_{\rm OD} = 70.46\mathrm{m}$
		2) حساب الإحداثيات القائمة للنقطة A:
	0.25	$X_{A} = X_{O} + \Delta X_{OA} = X_{O} + (L_{OA}.\sin G_{OA})$
		$X_A = 100 + [95.131 \times \sin(55.685)]$
	0.25	$\rightarrow X_{A} = 173 \mathrm{m}$
	0.25	$Y_{A} = Y_{O} + \Delta Y_{OA} = Y_{O} + (L_{OA}.\cos G_{OA})$
		$Y_A = 100 + [95.131 \times \cos(55.685)]$
	0.25	$\rightarrow Y_A = 161 \mathrm{m}$
		ومنه: (A(173; 161)
01		

العلامة		/ *1***
مجموع	مجزأة	عناصر الإجابة (الموضوع الثاني)
		3) حساب مساحة قطعة الأرض (ABCD) باستعمال الإحداثيات القطبية:
	0.25	$S_{ABCD} = \frac{1}{2} \sum [L_n.L_{n+1}.\sin(G_{n+1} - G_n)]$
	0.5	$S_{ABCD} = \frac{1}{2} \begin{bmatrix} L_{OA}.L_{OB}.\sin(G_{OB} - G_{OA}) + L_{OB}.L_{OC}.\sin(G_{OC} - G_{OB}) + \\ L_{OC}.L_{OD}.\sin(G_{OD} - G_{OC}) + L_{OD}.L_{OA}.\sin(G_{OA} - G_{OD}) \end{bmatrix}$
	0.25	$S_{ABCD} = \frac{1}{2} \begin{bmatrix} 95.131 \times 150.306 \times \sin(72 - 55.685) + \\ 150.306 \times 134.733 \times \sin(87.155 - 72) + \\ 134.733 \times 70.46 \times \sin(92.76 - 87.155) + \\ 70.46 \times 95.131 \times \sin(55.685 - 92.76) \end{bmatrix}$
	0.25	$S_{ABCD} = 2774 \mathrm{m}^2$
01.25		4) التحقق من مساحة قطعة الأرض (ABCD) باستعمال الإحداثيات القائمة:
	0.25	$S_{ABCD} = \frac{1}{2} \sum [X_{n}.(Y_{n-1} - Y_{n+1})]$
	0.5	$S_{ABCD} = \frac{1}{2} \begin{bmatrix} X_A.(Y_D - Y_B) + X_B.(Y_A - Y_C) + \\ X_C.(Y_B - Y_D) + X_D.(Y_C - Y_A) \end{bmatrix}$
	0.25	$S_{ABCD} = \frac{1}{2} \begin{bmatrix} 173 \times (108 - 164) + 236 \times (161 - 127) + \\ 232 \times (164 - 108) + 170 \times (127 - 161) \end{bmatrix}$
01.25	0.25	$S_{ABCD} = 2774 \mathrm{m}^2$
05		النشاط الثاني:
	0.25×4	1) تسمية العناصر: 1: أساس 2: بلاطة (او رافدة) 3: جدار (أو عمود) 4: فاصل الراحة
01	0.5	2) دور العنصر 2: الفصل بين مستويات المبنى واستقبال الحمولات وتوزيعها نحو الروافد.
0.5		ملاحظة: في حالة اختيار الإجابة رافدة للعنصر 2 ، يكون دورها إيصال القوى المسلطة
		عليها نحو الاعمدة و الربط بين المساند.
	0.25	3) حساب ارتفاع القائمة h:
0.75	0.5	H = 3.40 m من الشكل (4) نستنتج أنّ $H = 3.40 m$
0.75		$h = \frac{H}{n} = \frac{340}{20} \rightarrow \boxed{h = 17 \text{ cm}}$ ومنه:
		4) استنتاج عرض النائمة g:
0.75	0.25	2h + g = 64: حسب علاقة بلوندال
0.75 03	0.5	$g = 64 - (2 \times 17) \rightarrow \boxed{g = 30 \text{ cm}}$
20		